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Extensive sets of measurements of the shear viscosity, the scattered light intensity, and the relaxation
rate of the order-parameter fluctuations lead us to reexamine the static and dynamic critical behaviors of
binary solutions of pentaethylene glycol n-dodecylether (C,Es) and water. The scattered intensity, the
scattered field correlation function, and the relaxation rate of the order parameter show systematic devi-
ations from the behavior usually observed for simple or molecular binary fluids. A modified version of
the Sorensen et al. [Phys. Rev. A 13, 1593 (1976)] dynamical droplet model that assumes that close to
the critical point the critical clusters can be treated much like percolating aggregates having a fractal di-
mension d=2.49 and an associated polydispersity exponent 7=2.21 and which includes the finite size
of the micelles, very well accounts for all our experimental results.

PACS number(s): 82.70.—y, 64.70.—p, 78.20.—e

L. INTRODUCTION

Numerous studies can be found in the literature on
nonionic amphiphile alkyloxyethylene glycol monoether
C,E; +water critical micellar solutions and in multicom-
ponent water +oil+amphiphile mixtures, namely mi-
croemulsions [1]. These mixtures can create self-
assembling microstructures, e.g., quasispherical micelles,
whose sizes depend essentially on concentration and tem-
perature. Most experimental studies in nonionic micellar
systems [2—7] have shown that the static and dynamical
critical behaviors can be interpreted in terms of critical-
point universality [8], where the critical exponents and
the associated scaling functions describing the divergence
of the relevant physical quantities are identical to those
expected for a pure fluid or a binary mixture belonging to
the same three-dimensional (3D) Ising universality class.
However, in some of these critical mixtures forming mi-
celles like C,Es+H,0, the exponents y and v, charac-
terizing the divergence of the osmotic compressibility Y
and of the long-range correlation length &, are found to
be apparently smaller than the corresponding universal
3D Ising estimates [2,9,10]. These experimental results
have been the source of a number of theoretical works on
the subject, giving plausible arguments for a possible
nonuniversal behavior [11-13]. Bearing in mind that the
micelle itself has a rather “soft” structure in the sense
that micelles are dynamic entities which are continuously
and reversibly exchanging monomers with one another, it
has been argued that growth and conformational changes
of the individual micelles should be taken into account as
the temperature and the concentration are modified [14].
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This salient feature of micellar aggregates may appear in
significant morphological changes induced by varying the
total surfactant concentration, temperature, ionic
strength, and other physical conditions [15]. Another ap-
proach [16] was to consider the effect on the critical dy-
namics of the background terms of the transport
coefficients, in this case mutual diffusion and shear
viscosity, on the mode-coupling equations, following the
theory of Oxtoby and Gelbart [17]. In those analyses the
individual micelles were supposed to be a nearly mono-
dispersed spherical structure, independent of temperature
at least close to the critical point, i.e., in a domain corre-
sponding to € <1072 Here € is the reduced difference be-
tween the critical temperature 7, and the actual one T:
€=|T—T,|/T.. Typically, the critical amphiphile
weight concentration is of the order of a few percent and
the first micelles formed in such dilute solutions are very
likely spheroidal in shape [18]. However, one can expect
that the micelles are rather polydispersed. The effect of
polydispersity on the coexistence curve has been investi-
gated extensively for the case of macromolecular solu-
tions. As shown by Blankschtein et al. [19], a wide dis-
tribution in macromolecular sizes leads to a flat and
asymmetric coexistence curve, an effect experimentally
observed. A more recent explanation of the flatness and
the skewness of the coexistence curve involves the inter-
micellar attractive potential, and these features appear to
be a natural consequence of the interparticle attraction
when using, for instance, Baxter’s potential. As a conse-
quence of the flatness of the coexistence curve, the criti-
cal point is practically difficult to locate with a high pre-
cision.

The case of C,E s+ water mixtures is much similar to
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that described above, and the measured coexistence curve
is extremely flat [10]. Close to the lower consolute point
of mixing, the exponent 3, which characterizes the tem-
perature dependence of the order parameter CT™—C 7, is
apparently equal to 0.25 and so is much smaller than the
expected 3D Ising value 0.33. Here, C* and C~ denote
the compositions of the concentrated and dilute phases at
the two-phase equilibrium state. OQur previous data sets
obtained for this binary system indicated a somewhat
puzzling behavior. For example, we experimentally ob-
served a leveling-off in both y; and £ as a function of € in
a region close to T,. Besides, nearly mean-field values of
v =1.04 and v=0.51 were estimated in a wide range of
temperature far from T,, where ¥ and v characterize the
temperature divergence of ¥ and of §. Furthermore, the
analysis of dynamical light-scattering measurements in
terms of Kawasaki’s mode-coupling theory [20] involved
a considerably large contribution of the dynamical back-
ground term I'z. Its magnitude was typically more than
50% of the total relaxation rate I of the order-parameter
fluctuations in the hydrodynamic regime and about 30%
even in the critical regime. Some approximate equations
have been proposed by Burstyn et al. [21] and by Rouch
et al. [16] to account for the dynamical background
term, assuming a cutoff parameter g, linked to the in-
verse of the diameter of the micelle, on the basis of Oxto-
by and Gelbart [17] predictions. These background cal-
culations are, however, approximate and, as far as we
know, no fully satisfactory model exists in the frame of
generalized hydrodynamics theories for a mixture creat-
ing self-association in solution.

In recent years, the experimental results obtained for a
ternary Aerosol OT (AOT)+ water +decane microemul-
sion system and some of the nonionic amphiphile+water
binary systems have been interpreted in terms of a
modified version of the dynamical droplet model recently
proposed by some of us [22]. Satisfactory results have
been obtained when comparing our experimental data
with the model [23]. In this model, proposed by Sorensen
et al. [24] and Martin and co-workers [25] and modified
using Coniglio and Klein results [26], it is assumed that
the critical mixture is made of dilute polydispersed
dynamical fractal clusters having a fractal dimension d
and a polydispersity index 7. Indeed from percolation
theory, Coniglio and Klein [26] were able to reproduce
the critical Ising-like behavior by putting d,=d —B/v
and d =d (7—1), leading to d;~2.49 and 7~~2.21 [27},
when B and v are assigned to the universal values
relevant for a three-dimensional Ising system. In the
above relations d =3 is the dimensionality of space.
These values of d, and 7 are very close to those relative
to percolation. The analogy between the physical clus-
ters and critical fluctuations has been recently investigat-
ed by Guenoun, Perrot, and Beysens [28] and Beysens,
Guenoun, and Perrot [29] from direct visual observations
of the order-parameter fluctuations near a critical point.
They established experimentally the self-similarity of the
physical clusters and obtained a fractal exponent
d;~2.8, a value consistent with the theoretical estimate
when the experimental errors are taken into account.

In this paper we report an extensive set of experimental
data on the critical binary mixture C,E s +water. These
data and those previously reported are first analyzed in
terms of the generalized hydrodynamic theory of critical
phenomena. Even by using nonuniversal values of the
critical indices, some experimental results cannot be ex-
plained by the theory. We also used an extended version
of the dynamical droplet model, in which the finite size of
the monomer is taken explicitly into account. In this
model, the critical clusters are treated like polydispersed
fractal percolating aggregates having a fractal dimension
d, and a polydispersity index 7 which can be expressed in
terms of the usual critical indices y, v, and B. A quanti-
tative description of our full set of static and dynamic
light-scatiering data can be achieved by using universal
3D Ising values for the critical indices and realistic values
for the short-range correlation length and the radius of
the micelles.

II. EXPERIMENT

Our apparatus and experimental procedures are similar
to those described earlier [7,30]. Here, we give only the
essential details. Pentaethylene glycol n-dodecylether
(C,E5) synthesized and purified by Nikko Chemical Co.,
Ltd. and water of liquid chromatographic quality (Wako
Pure Chem. Ind., Ltd.) were used without further
purification. Water was degassed just before preparation
of the samples. The 6 mm diameter cylindrical glass cells
were filled by solutions of different concentrations in a
dry box containing dry nitrogen and then flame sealed
under a mild vacuum. In order to deduce the critical
weight concentration in amphiphile, the compositions of
the two coexisting phases at the equilibrium state were
measured along the coexistence curve [10]. The critical
composition is C,=(12.0%0.1) mg/g. Throughout this
work we will use € as the reduced temperature difference
between the temperature at which the demixing has been
recorded for the concentration C =12.0 mg/g and the
actual one. To reduce stray light effects, the scattering
cell was immersed in a silicon oil bath ensuring a very
good refractive index matching.

The distribution of scattered intensity was measured as
a function of the scattering angle 6 in the reduced tem-
perature range 2.301X107°<€<2.132X 1072 over the
angular range of 20° <6 =135° in steps of 5°. The corre-
-ponding wave vector g is given by g =2g,sin(6/2),
where g,=1.325X10°> cm~! is the incident-light wave
number, and is in the range 4.602X 10*<g <2.448X10°
cm ™. For each temperature, we carried out five experi-
mental runs, whose standard deviations ranged typically
fiom a few percent to 1%.

The long-term stability of samples containing surfac-
tants at temperatures well above room temperature has
been questioned and a chemical decay of the sample
could be a severe limitation for an accurate study of the
critical dy~amics [31]. Close to the critical point phase-
separation metastability effects can also affect the critical
dynamics. To test possible nonequilibrium states and
chemical decays of the samples close to the critical tem-
perature, we me-sured the scattered light intensity at
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four different angles, as a function of time for long
periods, up to 5 days, for four fixed temperatures, respec-
tively, €=~2.949X107° €~4.588X107° €=~7.210
X107, and €~1.016X10™*. In addition, we measured
the scattered light intensity over the entire angular range,
from 6=20° to 135° at a fixed temperature
€=9.832X 107, In Fig. 1 we depict the typical behavior
of the scattered intensity as a function of time for
€==7.210X 107>, For the full set of temperatures and an-
gles we studied, the intensity has the same behavior as
the one shown on Fig. 1, i.e., it remains constant, in-
dependent of time, over a period up to 100 h. This shows
that the measurements were performed in a stationary
state and that the chemical stability of the samples was
ensured at least for this period of time.

Usually, the scattered light intensity I (g) is analyzed in
terms of the Ornstein-Zernike (OZ) theory

Xr
1+¢%* "’
where I is almost independent of temperature close to
T,. If the OZ relation is obeyed, a plot of [I(g)]™!
against g2 should be a straight line. In complex fluids
this is not always the case, since static backgrounds can
play a role. Therefore we have analyzed our g-dependent

intensity data by using the following scaling static corre-
lation function:

g(gE) '=1+3,9%2—3,4", (1)

where 2, and 2, are constant, set respectively to unity
and zero in the OZ theory [32]. In simple fluids, a
nonzero value in 2, is usually attributed to a small devia-
tion from the OZ theory, which can be accounted for by
the introduction of a small positive critical exponent
n==0.03, as suggested by Fisher [33]. Critical micellar
systems are sometimes strong scatterers and attenuation
of the incoming laser beam and of the scattered beam in-
side of the sample is to be accounted for by turbidity

I(g)=1I,
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FIG. 1. The scattered light intensity as a function of time for
the fixed reduced temperature €~7.21X 1077 at four scattering
angles: 6=40° (diamonds), 6=60° (triangles), 6=90° (squares),
6=120° (circles).

effects. The total scattered intensity ® measured for the
C,,Es+water mixture was fitted to a polynomial func-
tion

6 .
In®@= 3 ag,;(lne)’ !, )
i=0
yielding a,=—15.6396558, a,=—6.5047311, a,

=—1.387321, a;=—1.58122X1071, a,
=-—9.0291737X1073, and as=—2.0143587X107%
whose values were used for attenuation corrections. The
magnitude of those corrections was 15% at €e~2.3X107°
and 8% at €=~5.6X10"% It is known that in light-
scattering measurements very close to the critical point,
multiple scattering also causes apparent deviations from
Ornstein-Zernike behavior [34]. A rough evaluation of
the multiple-scattering contribution shows that it is at
most 6% and less than 0.1% for the same values of e.
Since our main interest in this work is directed toward
general aspects of critical properties not too close to T,
(mainly in the hydrodynamic regime), we will not per-
form multiple-scattering corrections in the present
analysis. Let us also check here the long-term stability of
the sample. The extrapolated zero angle scattered inten-
sity 1(0)=1lim,_,,/(q) and the correlation length & are
shown as a function of time for a fixed temperature
€=~9.832X 1077 in Fig. 2. It can be seen that the values
of both [I(0)]"! and £ are constant well independent of
time over a very long period confirming the results given
above.

From dynamical light-scattering experiments, we have
measured the time-dependent order-parameter correla-
tion function at four different angles, respectively, 6=40°,
60°, 90°, and 120° in the temperature range of
6.556X1079<€<1.659X1073. In order to minimize
the multiple-scattering contribution [35], we used a 4 mm
diameter cylindrical cell. The phototube signal was ana-
lyzed by a 48-channel Malvern K7023 single-clipped
correlator. The measured time-dependent intensity
correlation function shows systematic deviations from
the single-exponential decay law observed for simple
fluids or molecular binary mixtures. Hence, we analyzed
our experimental data with a quadratic polynomial given
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FIG. 2. The inverse zero-scattered light intensity [7(0)] !
(triangles) and the long-range correlation length & (circles) as a
function of time at a fixed value of €~9.83X107°.
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FIG. 3. The relaxation rate I' as a function of time for a fixed
reduced temperature €~7.21X 1075 at four angles of scattering:
0=40° (circles), 6=60° (squares), §=90° (triangles), 6= 120° (di-
amonds).

by
InG(t)=K,—Kt +1K,t?, (3)

where K,, the nth cumulant, can be deduced by fitting
the experimental decay of the correlation function. The
normalized second moment k =K, /K? denotes the mag-
nitude of the deviations from the single-exponential de-
cay. In Fig. 3 we show the decay rate (first cumulant)
measured at a fixed temperature of €=~7.210X107° as a
function of time. Also in the dynamic case our data show
that the decay-rate values at four scattering angles are in-
dependent of time.

To measure the viscosity of the critical mixture we
used a rotational viscometer with concentric cylinders
separated by a narrow gap (1.00+0.04 mm), in which the
inner cylinder was rotating [30,36—-38]. A provision was
made enabling us to observe simultaneously the light
scattered by the mixture filled in the gap under dry nitro-
gen. We determined the critical temperature by observ-
ing the appearance of a spinodal ring around the directly
transmitted central spot on a screen for each experimen-
tal run. We operated the instrument at low shear rates in
the range of 0.4<S5<0.5 s”!. The viscometer was cali-
brated against water and the viscosity was calculated
from the angular speed of the inner cylinder for a fixed
value of the torque exerted on it. Three experimental
runs were carried out for the critical mixture in the tem-
perature ranges, respectively, of 7.368X1073<e
<2.675X1072, 3.275X107°<€<7.335 X1073, and
6.547X1076<€<3.274X1073.

We will discuss in the next section the critical
behavior of mixtures of C,,E 5+ water, including our ear-
lier experimental data, some of which have not been re-
ported in detail. Throughout this work we will make no
distinction between our earlier experimental data and the
data measured in the present work.

III. EXPERIMENTAL RESULTS

A. Intensity data

The scattered intensity has been measured at a fixed
angle 0=90° corresponding to ¢ =1.874X 10° cm !, over
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FIG. 4. The scattered intensity as a function of the reduced
temperature. The circles are experimental data, the dashed line
is the best fit of the data to the OZ theory with free values of the
indices, the dotted line is the best fit of the data to the OZ
theory including a static background with universal values of
the indices. The full line is the best fit of the data to Eq. (5).

the temperature range of 2.301X107°<¢€<2.311X 1072
with typical errors comprised between 0.3% and 1.4%.
It is shown as a function of € in Fig. 4. Here we start out
by recalling our previous results [9] obtained from the an-
gular distribution of scattered light intensity. In this pre-
vious analysis we estimated the exponent values of
Y=1.04 and v=0.51 in a temperature range of
4.7X1074<€=<1.8X 1072 To compare our previous re-
sults with the present ones, we have fitted our data de-
picted in Fig. 4 and spanning the temperature range of
5.6X107%<e<2.3X1072 to the OZ function with
2,=1 and 2,=0 in Eq. (1), assuming universal values of
¥=1.239 and v=0.630. We also included phenomeno-
logically a constant static background term Ip. This pro-
cedure yields a large systematic error with a maximum
deviation of about £40%. We also tried to fit the same
data set by considering a temperature-dependent back-
ground Iz(€). Even in this case, a significantly periodic
error with a maximum deviation of £10% was observed.
With the values of ¥y =1.035, v=0.514, and £,=3.2; nm
estimated previously [9], the best fit of the intensity data
to the OZ function was obtained in the corresponding
range of €. In this case a temperature-dependent back-
ground Iz(e)=ae’*+be+c was assumed. So the best fit
to the data using the OZ formula leads to a short-range
correlation length £,=~3.2; nm much larger than that
usually found for micellar aggregates, £,=~1 nm and to
apparently nonuniversal values of the indices ¥ and wv.
These results are very similar to those we reported previ-
ously. Besides, we also reported that, sufficiently close to
T,, both quantities [7(0)] ! and & level off, in contrast to
the expected power-law divergences. In Fig. 5 we plot £
and [I(0)]"! as a function of €. The solid lines corre-
spond to the power-law behaviors of £xe™ ¥ with
v=~0.51 and of [I(0)] '=¢€” with ¥ ~1.04. In the re-
gion €<4X 1074 both quantities tend to be constant,
suggesting nondivergent behaviors. In order to show
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FIG. 5. The inverse zero-scattered intensity [7(0)]! and the
correlation length £ as a function of €. The solid lines denote
power laws with slopes of ¥ ~1.04 and v=0.51, respectively.

more vividly a clear deviation from the linear behavior
representing a power law in the double logarithmic plot,
the quantities AI(0)=[I(0)]*—1I(0) and Ag=g°a*—§
are plotted as a function of € in Fig. 6. Here [I(0)]%°
and £°°° denote the extrapolated values within the region
€<4X10™* using the power law as represented by the
solid line of Fig. 6. Thus the measured values of £ and
I(0) and are well represented by &=£?°—Af with
AE=(2.411.2)X 107 %7 092%005 ¢cm  and by I(0)
=[I(0)]*°—AI(0) with AI(0)=(9.6+3.5)¢1-3410.04
It is noted that considerably large discrepancies can be
observegl, for example, a factor of about 2.5 in £ at
€e~107".

It has to be remarked that for a mixture at the critical
composition, the compressibility and the long-range
correlation length diverge at the critical point, while they
remain finite at off-critical phase-separation points. Con-
sequently, one might expect that our light-scattering
measurements performed on the sample at composition
12 mg/g were carried out for a noncritical mixture, i.e.,
along an off-critical isochore. To explore in more detail
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FIG. 6. The quantities AI(0)=[I(0)]®**—I(0) and

AE=E£"—E as a function of €, where the solid lines represent
the slopes of —1.34 and —0.92, respectively. The calculated
values in [I(0)]®° and £ are given by the power law
represented by the solid lines appearing in Fig. 5.

the behaviors of [I(0)]”! and & we have performed
light-scattering measurements along various isochores
covering the concentration range from C=~5.81 to
C~15.4 mg/g. The temperatures T, corresponding to
phase separation were determined in the entire concen-
tration range investigated here by the onset of the so-
called spinodal ring of the forward scattering of light
[36]. Again, and as expected, since we are now not study-
ing a critical sample, saturation effects in [1(0)]™! and
in £ are observed in the double logarithmic plots vs
the reduced temperature difference €, defined by
€,=(T,—T)/T.. To reproduce the power-law behavior
for the osmotic compressibility and the long-range corre-
lation length deduced from light-scattering experiments,
we assume for each composition a divergence of the
relevant quantity at a temperature 7, inside the two-
phase region of the phase diagram of the mixture
C,Es+water, which should correspond to the spinodal
line [37]. We expect that it would be possible to fit the
data to a power law as long as the pseudospinodal con-
cept can be assumed for any isoconcentration line. At
the critical composition, the pseudospinodal temperature
T, should be identical to T, =T, namely, T, — T, =0.
Strictly speaking, a power-law divergence along an off-
critical isochore may not be valid as shown by model
equations of state [39], although relevant parameters like
the compressibility diverge along the spinodal curve.
However, for samples having compositions not too far
from the critical one, numerical results deduced, for in-
stance, from linear or cubic equations of state, are in
agreement with the pseudospinodal concept. In the
present analysis we treated Ae=(T;—T,)/T,, &, and v
as free parameters to fit the experimental data of the
long-range correlation length £ to a simple power law

E=E)et+Ae)™. 4)

Our T, should be identical to T, if the pseudospinodal
concept is valid in the present case. The results deduced
from Eq. (4) are summarized in Table I. The values of &,
and v averaged over the concentration range of
8.7,C=<15.3;, mg/g were §&,=2.1£0.3 nm and
v=0.6110.03. We excluded the values obtained at the
concentration C =5.8, mg/g since, as discussed above,
this composition is too different from the critical one.
In the case depicted in Fig. 5 for the mixture having
the concentration C =12.0 mg/g, we obtained &,
=(2.0%+0.6) nm, v=0.60+0.05, and Ae=(1.64,+0.40)
X 10™* by fitting the data to Eq. (4). The fit of [7(0)]™!
to a similar power law as in Eq. (4) also leads to
y=1.22+0.09 and Ae=(1.73+0.40)X10™% The es-
timated values of Ae deduced from both [7(0)]~! and &
are very similar within experimental errors, and the in-
dices ¥ and v have values very close to the universal ones.
Besides, a universal value of $=0.32,+0.022 can be ob-
tained by fitting the coexistence curve of C,E s +water in
the temperature range of 9.835X 10 °Se51.665X1073
if we take the value of Ae~10">. These results clearly
indicate that the Ising values of the critical indices can be
obtained when a nonzero, although very small, value of
Ac is considered, while Ae does not go to zero in the en-
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TABLE 1. Values of Ag, &, and v at various concentrations C.

C (mg/g) Ae & (nm) v
5.81 (1.2+0.9)x 1073 3.0+2.2 0.54+0.16
8.74 (4.2+0.9)x 1074 2.1+0.4 0.61+0.03

10.13 (6.3£1.0)X107® 2.8+0.3 0.57+0.02
11.19 (1.8£0.3)x107* 1.61+0.2 0.65+0.02
13.37 (2.1£0.3)X107* 1.910.2 0.60+0.02
15.36 (2.2+0.3)X 1074 1.7+0.2 0.60+0.02

tire concentration range investigated in this work. A
similar result has been reported by Seto et al. for a mi-
croemulsion system [40].

As mentioned earlier, one observes a tendency to an
upward curvature of the plot of the intensity as a func-
tion of € at higher distances in temperature from the crit-
ical point as shown in Fig. 4. This effect, also observed
for microemulsion systems, is only sizable when the criti-
cal solution is made of supramolecular aggregates. In or-
der to account for these features, we use the structure
factor associated with the dynamical droplet model. It
has been recently derived for fractal polydispersed aggre-
gates by Tartaglia and co-workers [22] from the Chen
and Teixeira calculation [41], and includes Fisher’s
correction. The scattered light intensity I (g) is given by

X

dp(r=3)/72

d;
I(g)=I, (1+x2)

8 CG—r,(x,/x)7(1+x2)%"?)
rQ2—r(x,/x))

(5)

where I is a term depending upon the geometry of the
experiment and almost independent of temperature close
to T,, x =q¢& the scaling variable, I'(u,v) the incomplete
Euler gamma function, and x; =¢gR, is the reduced size
of the individual micelle. In this equation a finite-size
contribution associated with micelles themselves has been
explicitly taken into account via x;. In the frame of ear-
lier approaches on light scattering from critical systems
this contribution sometimes has been treated as the non-
trivial background term. Thus, from the fits of our inten-
sity data to Eq. (5) we would gain insight into the finite-
size contribution associated with self-assembling micro-
structures. This has been done for our intensity data de-
picted in Fig. 4 which were fitted to Eq. (5). The best fit
to the data leads to the fractal dimension d;=2.5,40.10
and to the polydispersity index 7=2.35%+0.10. These
values are compatible with the theoretical estimates to
within experimental errors and lead to values of the criti-
cal indices that are very close to the universal ones. The
two other fitted parameters involved in Eq. (5) are the
short-range correlation length &, and the radius R, asso-
ciated with an effective micellar size. The estimated
values of these parameters for the mixture C,,E s+ water
are £,=1.41+0.1 nm and R, =2.8+0.2 nm, respectively.
The value of £,=~1.4 nm inferred from the modified ver-
sion of the droplet model is almost consistent with the
one £§,=1.6310.05 nm obtained from a fit of the data

shown in Fig. 5 to a power law [Eq. (4)] by setting
¥=1.239 and v=0.630. The present result is shown in
Fig. 4 in comparison with the fit to the OZ function, in
which the solid curve represents the calculated one of Eq.
(5) with d,=2.50, 7=2.35, £,=1.4 nm, and R,;=2.8
nm. In the figure the broken and dotted curves are the
fits to the OZ function without a background term and a
constant background I, respectively. Besides, Eq. (5)
gives [1(0)]™'=lim,_o[I(¢)]"" in the form

I r2—7,(R,/6)Y)
r3—1,(R,/6)")

R,

§

In Fig. 7 we show the calculated curve of Eq. (6) by set-
ting the parameter values of d,=2.50, 7=2.35,
¥=1.239, v=0.630, {,=1.4 nm, and R;=2.8 nm. In
the figure the experimental data are plotted against a
modified value €*=e+Ae with Ae=1.74X107% It
should be noted that a fairly good agreement can be ob-
served between the experimental data and the calculated
curve predicted by Eq. (6), the indices being assigned to
the 3D Ising values, by putting Ae~ 1074,

[I(0)] =1,

(6)

B. Dynamical data

The decay rate of the order parameter measured for
solutions of C;,E5 in water has been analyzed using Eq.
(3). The observed deviations of the time-dependent corre-
lation function from a single-exponential decay were
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FIG. 7. The zero-scattered intensities as a function of the
modified reduced temperature €* =€+ Ae, where the solid line
represents the calculated curve of Eq. (6) setting d;=2.50,
r=2.35, y=1.239, v=0.630, £,=1.4 nm, and R, =2.8 nm.
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significantly large. For example, typical values of the
normalized second cumulant k were k =0.3,+0.16 at
€=3.852X1073. The measured relaxation rate of the
scattered field (or intensity) correlation function not only
reflects the temporal decay of the order-parameter fluc-
tuations depending on temperature and wave vector, but
may be influenced also by a possible existence of dust par-
ticles in the mixture, and by stray light scattered from the
glass walls of the sample cell. In our case, the contribu-
tions to the decay rate induced from stray light and from
dust particles were at most a few percent, over the entire
angular ranges [42]. The crude estimated value of k was
k =0.0340.02 in the range of 6X1072<Tt <2 at e~0.
On the other hand, we obtained k =0.221+0.06 at
€==3.84X1072, i.e., at large distance from T,. Roughly
speaking, the deviation from the single-exponential law is
little as € goes to small values, while the k values remain
relatively large at higher distances from T,. To physical-
ly explain the nonexponential behavior of the scattered
field correlation function, we exclude contributions due
to a frequency-dependent critical viscosity as predicted
by Ferrell and co-workers [43], which would lead to too
small effects [44]. More likely, we conjecture that the ob-
served deviations from a single-exponential decay should
be attributed to significant contributions due to the
finite-size effect associated with molecular aggregates of
C,E5 in water. This effect has been recently experimen-
tally observed for a critical microemulsion system by us-
ing a logarithmic correlator [22].

Analyses of the decay rate (first cumulant) of the time-
dependent correlation function associated with the
order-parameter fluctuations are usually made in the
frame of mode-coupling theories of critical phenomena
including dynamical background contributions. In these
theories, the decay rate I' measured near the critical
point is given as the sum of a critical part I', and a back-
ground part ', ie.,, [=I",+T5. The critical part ",
can be represented by

I‘C=I‘—I‘B=Rq3mﬂ

(x), ¢)
where R ~1.03 is the universal amplitude ratio and Q(x)
the dynamical universal function. The viscosity n(T) is
given by

T =n5(Q0€) "=15(Qo&) "€ ?, (8)

in which 75 is the nonsingular part of the viscosity, Qg a
cutoff parameter, and x,=¢/v the critical viscosity ex-
ponent. The universal value of ¢ =~0.04 has been found
for many critical mixtures [45]. In general, a micellar
system has been regarded as shear-sensitive fluid, whose
viscosity tends to exhibit non-Newtonian behavior near
the critical consolute point. This implies that, very close
to T,, shear flow in the viscometer tends to affect viscosi-
ty data, giving rise to a leveling off. To minimize these
effects, a low-shear rotational viscometer was used in this
work. The universal value of ¢ =~0.04 has been obtained
using the low-shear viscometer employed for the critical
micellar systems C4E ; +water and C,oE, + water studied
previously [46]. Since the magnitude of the shear effect
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FIG. 8. The shear viscosity as a function of the reduced tem-
perature. The circles are experimental data, the full line is the
best fit of the data, taken close to T,, to a power law, the dash-
dot line is a power law with a slope of —0.04, whereas the solid
line is the best fit of the data, taken far from T, to an Arrhenius
law.

depends on the product of the shear rate and the lifetime
of the fluctuations [47], this implies that shear effects not
only depend on the reduced temperature but also on the
mixtures themselves. In Fig. 8 we show our viscosity
data taken for C,Es-+water in a low range of shearing.
Since the measured viscosity is approximately insensitive
to the temperature variation in the range e~2X 1073, we
used here the value of 7 ~2.15 mPas at €~2.3X 1073
as the background viscosity in the critical region. The fit
to the experimental data leads to the amplitude
A =(Qy&,) "=0.85+0.02 and ¢=0.02310.004 in the
temperature range 2.6 X107°<e<3.3X 1074 the data
points showing the leveling off being discarded in the
analysis. The value we estimated for the exponent ¢ is
lower than the universal one expected for a fluid system,
i.e., 0.04. In turn, we analyzed all data points within the
critical region (€<3.3X107%) by considering of a
nonzero value of A€ and treating ¢, the amplitude ratio
A, and Ae as free parameters. We then obtain
$=0.033+£0.003, A4 =1.68+0.03, and Ae=(3.610.8)
X 1073, Considering the difficulty of the experiments, a
possible influence of the shear flow even at low shear rate,
and the temperature range of fitting, the difference be-
tween the present value of ¢=0.033+0.003 and the
universal one 0.04, is not very large, so that in turn we
tried to fit our viscosity data by setting ¢=0.04. This
yielded 4 =1.6 and Ae=~6X10"°. Again, it is noted
that the universal value in the viscosity exponent can be
obtained by considering a small temperature shift
Ae~1074

The recently proposed dynamical universal function
Q(x) can be represented by

Qx)=(1/x)Kx)[Sx)]", 9)

where K (x), Kawasaki’s function, is given by
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K(x)=% 1+x2+ tan x| , (10)

1
x3——
x

and S(x), the correction to scaling, by S(x)
=[1+(b/ay)*x?]2. The coefficient a, is related to the
universal amplitude ratio R by R =a3”. Analytical ex-
pressions of the background part I'; have been proposed
both by Burstyn et al. [21] and by Oxtoby and Gelbart
[17]. The Burstyn et al. formula reads

2£2
I"Bz 2_@% s (11)
16mp8 4.8

where g, is a Debye cutoff wave number. On the other
hand, the one derived from Oxtoby and Gelbart is

kpT 1442
I3 =RCq?
PR et aE 12

where C is a numerical constant of the order of 0.9. Ap-
plying this formula to a microemulsion system, Rouch
et al. [16] were able to show that the inverse of the De-
bye cutoff is of the order of the diameter of the mi-
croemulsion droplet. In the frame of the modified ver-
sion of the dynamical droplet model, it can be shown [23]
that the first cumulant (decay rate) is given by

kyT . TG—rx))
q
160(T) " p(3—7—(1/d,),x})

©G3—7—(1/d,),u) 12
r3—ru) U3

F(x,xl )>=R

1
x2

where u =(x1/x)df(1+x2)df/2. Equation (13) reduces
exactly to the Perl and Ferrell mode-decoupling result
[43] when the radius of the monomer R;—0 and, in this
case, it is numerically very close to Kawasaki’s formula
[20]. However, when the radius of the individual mi-
celles, supposed to be spherical and monodispersed, is not
very small compared to the correlation length, significant
deviations are expected from generalized hydrodynamic
models. In fact, numerical simulations [23] show that
when R ;50 a leveling off of the linewidth is observed far
from the critical point, in qualitative agreement with the
experimental findings. So the dynamical background dis-
cussed above and connected to the finite-size effect of the
monomers should be accounted for, at least partially, by
the extended version of the dynamical droplet model.

The experimental values of the decay rates have been
compared to the three models quoted above using
different fitting procedures. First of all, data have been
fitted to Kawasaki’s equation including a background
[Eq. (11) or (12)] with a fixed value of the amplitude
R =1.03 as deduced from the mode-coupling theory and
indices equal to their universal values, the Debye cutoff
parameter g, being free. Even a moderately good fit to
the full set of data obtained at different scattering angles
cannot be obtained with a single value of g,. So this
quantity appears to be strongly wave-vector-dependent,
which is unrealistic. If a best fit is performed to data ob-
tained at the lowest g value corresponding to a scattering
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FIG. 9. Comparison of the theoretical models with the relax-
ation rate associated with the order-parameter fluctuations as a
function of the reduced temperature for a value of the scattering
angle of 6=35°. The circles are experimental data, the full line
is the best fit of the data to Eq. (13) (dynamical droplet model),
the dotted line is the best fit of the data to Oxtoby and Gelbart
[Eq. (12)], and the dashed line is the best fit of the data to Bur-
syn et al. [Eq. (11)].

angle of 35° and assuming that the indices are universal,
R being a free parameter, the following values are ob-
tained: £,=(1.4,10.05) nm, g,=(1.0£0.2) nm™’, and
R =1.15%0.05 using the equation of Burstyn [Eq. (11)],
and £,=(1.4,%+0.05) nm, ¢,=(1.0+0.2) nm~’', and
R =1.15%0.05 using the equation of Oxtoby and Gelbart
[Eq. (12)]. We can now use these numerical values of the
parameters to calculate the linewidth for the other wave
vectors. The results we got are depicted in Figs. 9-13. It
can be seen that the Burstyn et al. [21] model
significantly deviates from the experimental findings,
even in the critical regime at the largest value of the wave
vector. This is not the case when using the Oxtoby and
Gelbart [17] model. However, this model does not accu-
rately describe data taken far from the critical point.

On the other hand, fitting the data to the dynamical
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FIG. 10. The relaxation rates measured at the scattering an-

gle 6=45° as a function of €. The symbols are the same as those
of Fig. 9.
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FIG. 11. The relaxation rates measured at the scattering an-
gle 6=60°. The symbols are the same as those of Fig. 9.
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FIG. 12. The relaxation rates measured at the scattering an-
gle 6=90°. The symbols are the same as those of Fig. 9.
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FIG. 13. The relaxation rates measured at the scattering an-
gle 6=120°. The symbols are the same as those of Fig. 9.
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FIG. 14. Comparison of experimental relaxation rate of the
order parameter with the calculated ones following the modified
dynamical droplet model of Eq. (13). The symbols refer to mea-
surements: 0=35° (inverted triangles), 6=45° (circles), 6=60°
(squares), 6=90° (diamonds), 6= 120° (triangles).

droplet model [Eq. (13)] with universal values of the in-
dices leads to £§,=(1.4,%£0.05) nm, R;=(2.8+0.2) nm,
and R =1.00%0.05. It can be seen in Fig. 14 that the
calculated linewidths are in very good agreement with ex-
periments not only in the critical regime but also in the
hydrodynamic regime, even far from the critical point.
Moreover, the values of the fitted coefficients &, and R,
are in this latter case the same as those used to fit the in-
tensity data and the coupling constant R is very close to
its universal value 1.03.

IV. DISCUSSION

First, forcing our experimental data to fit the OZ
theory and the mode-coupling formulas without includ-
ing static and dynamical backgrounds leads to bad results
and to nonuniversal values of the critical indices. Be-
sides, the values inferred for &, from the static and dy-
namic critical phenomena differ by a factor of the order
of 2, showing the inconsistency of the procedure. On the
other hand, a fairly good fit to the data can be obtained
by using universal values for the indices owing to the in-
troduction of large nonuniversal static and dynamical
backgrounds. . Considerable efforts have been devoted to
describing the thermodynamic and transport properties
of fluids in terms of a crossover from the singular
behavior in the critical region to the regular behavior far
away from the critical point [48]. But as far as we know,
no model is currently available to treat the static and
dynamical backgrounds or micellar solutions including a
non-negligible finite-size effect due to self-association in
solution. Therefore the contributions to the critical parts
appear as ad hoc phenomenological background terms.

When using the modified version of the dynamical
droplet model, a very good fit to the static and dynamical
properties can be achieved without introducing any back-
ground. In this case however, the value we deduced for
the polydispersity index 7 from intensity is slightly
greater than the theoretical estimate. This can be ex-
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plained by the experimental findings of di Meglio et al.
[49], who observed a non-negligible amount of dimers
close to the critical point of the same mixture, thereby in-
creasing the apparent polydispersity of the sample. On
the other hand, the universal value of 7 can be used to fit
the relaxation rate of the order parameter since this
quantity is less sensitive to polydispersion than intensity.
Furthermore, the numerical value 2.8 nm we deduced for
the radius of the monomer R, is in good agreement with
the experimental determination, namely 2.3 nm, given by
di Meglio et al. [49]. It is also consistent with values
close to 3.0 nm obtained on C,E;+H,0 by different au-
thors [14,50,51], the chain length of the C,,E; surfactant
molecule being slightly larger than that of C,,E5.

We believe that the most accurate value for £, is about
1.4 nm, since it is close to that given in Refs. [4,5] for the
systems C,,E¢+H,0 and C,,E;+H,0, the nonionic sur-
factant molecules of these solutions being very similar to
the one used in the present study. The difference between
the value 1.4 nm deduced for &, from the present analysis
and the value £,=3.2; nm, reported in Ref. [9], can be
explained as follows. In C,,Es+H,O solutions, the ra-
dius R of the monomer is large, and is about two times
&0, leading to a very strong influence of the cutoff param-
eter in Egs. (11) and (12). In such circumstances and in
the hydrodynamic regime, the droplet model predicts an
upward curvature for the double logarithmic plot of the
intensity as a function of €, in agreement with the experi-
mental data. Such a behavior is not explained by the OZ
formula which predicts in this regime that this plot
should be a straight line of slope ¥. However, this curva-
ture can be accounted for by adding phenomenologically
a large constant static background to the OZ formula.
This background has in turn a strong influence on the ap-
parent values of this indices ¥ and v, and also on £, Us-
ing this procedure leads to values of ¥ and v lower than
their corresponding universal values (y=1.239,
v=0.63), in agreement with the numerical results report-
ed in Ref. [9].

As far as dynamical critical phenomena are concerned,
introducing dynamical background effects strongly im-
proves the fit to the experimental results. However, some
features we observed in the hydrodynamic regime cannot
be explained. Indeed the dynamical background pro-
duces an upward curvature of the log-log plot of T" as a
function of €, whereas the experiment shows a downward
curvature, as in the case of a microemulsion system [22].
Therefore it is clear that classical theories of critical phe-
nomena cannot accurately account for the experimental
results we report. On the other hand, the modified ver-
sion of the dynamical droplet model very well accounts
for all of our experimental results in the entire tempera-
ture and wave-vector range investigated here, suggesting
universality both in the critical exponents and in the am-
plitude ratio. We therefore believe that the apparently
too small values of the exponents ¥ and v previously re-
ported [9] are probably not connected to a breakdown of
universality of critical phenomena, but more likely linked
to an oversimplification of the classical theories which do
not account accurately for the finite size of the monomer,

as shown in our earlier work [23]. This happens typically
when R, is of the order of a few nanometers and larger
than &,

As concluding remarks, let us briefly discuss problems
that are still open. One of the main difficulties encoun-
tered in the study of critical phenomena in the mixture
C,,E s+ water is to establish precisely the location of the
critical point. The very detailed experimental study of
the phase diagram of the present system we performed al-
lowed us to set the critical composition to be C, =12
mg/g. At this composition the volume equality between
the dilute and concentrated coexisting phases was also
confirmed at a few mK above T,. In addition, we ob-
tained the phase-separation temperature by observing the
onset of the so-called spinodal ring formed by the for-
ward light scattered from the mixture. This spinodal-like
ring was actually observed for the entire range of concen-
trations employed in this work. We reported [52] the
phase diagram thus obtained for the present system, in
which it appeared that the binodal could be much closer
to the so-called spinodal. Schmid and Blossey [53] have
suggested that the presence of an internal structure in a
fluid may shrink the metastability region of the phase di-
agram, resulting in a spinodal line approaching the bino-
dal. If this effect should occur in our case, it would be
difficult to observe a temperature difference between the
off-critical phase-separation and critical phase-separation
temperatures. Therefore we do not rule out completely
the fact that the sample at composition C =12.0 mg/g
may not be exactly at the critical concentration. Indeed
even if this composition is not exactly the critical one, the
results given in this work should in fact remain valid.
The observed properties associated with anomalous
behavior along an off-critical isoconcentration near the
critical point should be nearly the same as along the criti-
cal isoconcentration, when accounting for a slight
difference in the temperature T, —T,.

It is worthwhile to point out also that micellar solu-
tions are in general quite sensitive to shear flow, giving
rise to significant nonlinear effects. These effects some-
times tend to produce differences in the effective viscosity
measured under shearing, depending on the types of
viscometers employed. As an example, using a capillary-
tube viscometer we have estimated typical viscosity
values of about 2.3-2.4 mPas, while in the present
analysis the value of =~2.2 mPas at e~2X 10> has
been used. By considering the possibly large errors due
to shear-induced nonlinear effects we infer that the max-
imum error of our critical viscosity could be about 10%,
while the relative one remains within 1%. Therefore fu-
ture studies should focus on the nonlinear effects in
shearing to get precise knowledge of viscosity behavior in
the present system.

In addition to the above problems, a general question
must be addressed. Martinez-Mekler, Al-Noaimi, and
Robledo [54] have suggested that in a micellar solution
model a crossover due to temperature-dependent interac-
tions may occur much closer to the critical temperature,
leading to an unusual compression of the critical region
and to effective exponents close to criticality, while
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universality should always be preserved. They have
pointed out that, depending on the mixture energy pa-
rameters, the interactions may change sign at a certain
temperature T, very close to the T, resembling the so-
called ® point for a macromolecular solution where the
second virial coefficient vanishes. It has also been recog-
nized experimentally by Fujimatsu et al. [55] that the ®
point associated with a micellar solution may be located
at a temperature slightly below T,. Their suggestions are
quite attractive as a possible explanation for the unex-
pected behaviors observed very close to T,. Unfortunate-
ly, it is not possible to conclude whether the present sys-
tem behaves as the micellar solution model proposed by
Martinez-Mekler, Al-Noaimi, and Robledo [54], al-
though the unusual leveling off experimentally observed
in the critical behavior of the C,,Es mixture would ap-
pear to conform to their suggestions.
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